Numerical solution of Hamiltonian model by using homotopy analysis method
نویسندگان
چکیده
منابع مشابه
Numerical Solution of Fuzzy Linear Volterra Integral Equations of the Second Kind by Homotopy Analysis Method
متن کامل
Numerical solution of fuzzy Hunter-Saxton equation by using Adomian decomposition and Homotopy analysis methods
In this paper, a fuzzy Hunter-Saxton equation is solved by using the Adomian'sdecomposition method (ADM) and homotopy analysis method (HAM). Theapproximation solution of this equation is calculated in the form of series whichits components are computed by applying a recursive relation. The existenceand uniqueness of the solution and the convergence of the proposed methodsare proved. A numerical...
متن کاملnumerical solution of fuzzy linear volterra integral equations of the second kind by homotopy analysis method
متن کامل
Numerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method
The controlled harmonic oscillator with retarded damping, is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems. In this paper, to solve this problem, we presented an analytical method. This approach is based on the homotopy perturbation method. The solution procedure becomes easier, simpler and mor...
متن کاملNumerical solution of seven-order Sawada-Kotara equations by homotopy perturbation method
In this paper, an application of homotopy perturbation method is appliedto nding the solutions of the seven-order Sawada-Kotera (sSK) and a Lax'sseven-order KdV (LsKdV) equations. Then obtain the exact solitary-wave so-lutions and numerical solutions of the sSK and LsKdV equations for the initialconditions. The numerical solutions are compared with the known analyticalsolutions. Their remarkabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Computational Techniques in Electromagnetics
سال: 2015
ISSN: 2194-0266
DOI: 10.5899/2015/acte-00169